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We develop a general criterion about coarsening for some classes of nonlinear evolution equations describ-
ing one-dimensional pattern-forming systems. This criterion allows one to discriminate between the situation
where a coarsening process takes place and the one where the wavelength is fixed in the course of time. An
intermediate scenario may occur, namely “interrupted coarsening.” The power of the criterion on which a brief
account has been given �Politi and Misbah, Phys. Rev. Lett. 92, 090601 �2004��, and which we extend here to
more general equations, lies in the fact that the statement about the occurrence of coarsening, or selection of a
length scale, can be made by only inspecting the behavior of the branch of steady state periodic solutions. The
criterion states that coarsening occurs if ���A��0 while a length scale selection prevails if ���A��0, where �

is the wavelength of the pattern and A is the amplitude of the profile �prime refers to differentiation�. This
criterion is established thanks to the analysis of the phase diffusion equation of the pattern. We connect the
phase diffusion coefficient D��� �which carries a kinetic information� to ���A�, which refers to a pure steady
state property. The relationship between kinetics and the behavior of the branch of steady state solutions is
established fully analytically. Another important and new result which emerges here is that the exploitation of
the phase diffusion coefficient enables us to determine in a rather straightforward manner the dynamical
coarsening exponent. Our calculation, based on the idea that �D������2 / t, is exemplified on several nonlinear
equations, showing that the exact exponent is captured. We are not aware of another method that so system-
atically provides the coarsening exponent. Contrary to many situations where the one-dimensional character
has proven essential for the derivation of the coarsening exponent, this idea can be used, in principle, at any
dimension. Some speculations about the extension of the present results are outlined.
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I. INTRODUCTION

Pattern formation is ubiquitous in nature, and especially
for systems which are brought away from equilibrium. Ex-
amples are encountered in hydrodynamics, reaction-diffusion
systems, interfacial problems, and so on. There is now an
abundant literature on this topic �1,2�. Generically, the first
stage of pattern formation is the loss of stability of the ho-
mogeneous solution against a spatially periodic modulation.
This generally occurs at a critical value of a control param-
eter, �=�c �where � stands for the control parameter� and at
a critical wavenumber q=qc. The dispersion relation about
the homogeneous solution �where perturbations are sought as
eiqx+�t�, in the vicinity of the critical point assumes, in most
of pattern-forming systems, the following parabolic form
�Fig. 1, inset�

� = � − �q − qc�2 �1�

where � is proportional to ��−�c�. For ��0, ��0 for all
q�s and the homogeneous state is stable. Conversely, for �
�0 there is a band of wavevectors �q��q−qc�= ±�� cor-
responding to unstable modes �Fig. 1�, so that infinitesimal
perturbations grow exponentially with time until nonlinear
effects can no longer be ignored. In the vicinity of the bifur-
cation point ��=0� only the principal harmonic with q=qc is

unstable, while all other harmonics are stable. For example,
Rayleigh-Bénard convection, Turing systems, and so on, fall
within this category, and their nonlinear evolution equation is
universal in the vicinity of the bifurcation point. If the field
of interest �say a chemical concentration� is written as
A�x , t�eiqcx, where A is a complex slowly varying amplitude,
then A obeys the canonical equation

�tA = A + �xxA − �A�2A �2�

where it is supposed that the coefficient of the cubic term is
negative to ensure a nonlinear saturation. Because the band
of active modes is narrow and centered around the principal
harmonic, no coarsening can occur, and the pattern will se-
lect a given length, which is often close to that of the linearly
fastest growing mode. However, the amplitude equation
above exhibits a phase instability, known under the Eckhaus
instability �1�, stating that among the band of allowed states,
��q�=��, only those modes whose wavevectors satisfy ��q�
��� /3 are stable with respect to a wavelength modulation.

There are many other situations where the bifurcation
wavenumber qc→0 and, therefore, a separation of a slow
amplitude and a fast oscillation is illegitimate. Contray to the
case �1�, where the field can be written as A�x , t�eiqcx with A
being supposed to vary slowly in space and time, if qc→0
the supposed fast oscillation, eiqcx, becomes slow as well and
a separation of A does not make sense anymore. In this case,
a generic form of the dispersion relation is �Fig. 2, main�
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� = �q2 − q4. �3�

A third situation is the one where the dispersion relation
takes the form �Fig. 2, inset�

� = � − q2. �4�

In both cases, Eqs. �3� and �4�, the instability occurs for �
�0, and the band of unstable modes extends from q=0 to
q=��. Meaning, there is an infinite number of unstable har-
monics: If q̄ is the wavenumber of an unstable mode, then
also q̄ /2 , q̄ /3 , . . . are unstable. Examples that fall in this cat-
egory are numerous �3�: The air-liquid interface in a thin film
falling on an inclined plane, flame fronts, step dynamics in
step flow growth, sand ripples, and so on, or simply the
Ginzburg-Landau equation �2�, which corresponds to case
�4�.

Dispersion relation �3� has an extra factor of q2 which is
often due to a conservation constraint �see below�. Because
of the dispersion form, constant plus a quadratic term, �4�
might formally resemble �1�. However, an important caution
must be taken: In �1� it must be remembered that q should
remain close to qc, so that only one harmonic is active, while
in �4� no such restriction is made and, therefore, q can be as
close as possible to zero, leading to a highly nonlinear dy-
namics.

Other types of dispersion relations which may arise, and
which are worth mentioning, correspond to situations where
�=��q�−q2, or �=��q�− �q�3, leading also to a vigorous mode
mixing, for the same reasons evoked above. The occurrence
of a nonanalytic dispersion relation with �q� is a consequence
of long range interactions �4�. If the unstable band extends
down to q=0, the appropriate form of the evolution equation
is not an amplitude equation for a slowly varying function A,
but rather a partial nonlinear differential equation, or an

integro-differential equation, for the full field of interest,1 say
h�x , t� if one has in mind a front profile.

A prominent example of a partial differential equation is
the Kuramoto-Sivashinsky �5–7� �KS� equation

�tu = − �xxu − �xxxxu + u�xu �5�

which leads to spatio-themporal chaos. Note that by setting
u=�xh we obtain an equivalent form of this equation, namely
�th=−�xxh−�xxxxh+ ��xh�2 /2. This equation arises in several
contexts: Liquid films flowing down an inclined plane �5�,
flame fronts �7�, step flow growth of a crystal surface �3�.

Complex dynamics such as chaos, coarsening, etc.¼, are
naturally expected if modes of arbitrarily large wavelength
are unstable. However, these dynamics may occur for sys-
tems characterized by the dispersion relation �1� as well, if
the system is further driven away from the critical point �i.e.,
if q2	q1, see Fig. 1� because higher and higher harmonics
become active. We may expect, for example, coarsening to
become possible up to a total wavelength of the order of
2
 /q1.

For systems which are at global equilibrium the nonlin-
earity u�xu is not allowed, and a prototypical equation having
the dispersion relation �3� is the Cahn-Hilliard equation

�tu = − �xx�u + �xxu − u3� . �6�

The linear terms are identical to the KS one, and the differ-
ence arises from the nonlinear term. Note that if dynamics is
not subject to a conservation constraint, �−�xx� on the right
hand side is absent, and the dispersion relation is given by
Eq. �4�. The resulting equation is given by �2� for a real A
and it is called real Ginzburg-Landau �GL� equation or
Allen-Cahn equation.

The KS equation, or its conserved form �obtained by ap-
plying �xx on the right hand side�, was suspected for a long
time to arise as the generic nonlinear evolution equation for

1In case �4� an equation similar to �2� may arise, but it describes
the full field and not just the envelope.

FIG. 1. Inset: Dispersion curve �1�: �=�− �q−qc�2. There is loss
of stability at a critical wavenumber qc, when �=0 �dotted line�. For
��0, the unstable band extends from q=q1 to q=q2 �full line�.
With increasing � the unstable region widens �dashed line�. The
parabolic shape of ��q� is an approximation, valid close to its maxi-
mum. This applies, e.g., to the dispersion curve �38� of the Swift-
Hohenberg equation �see the main figure�: �=�− �1−q2�2 �qc=1�.
When �=1 �dashed line� the unstable band extends down to q=0
and ��q� resembles the dispersion curve of the Cahn-Hilliard equa-
tion �see �3� and Fig. 2�.

FIG. 2. Main: Dispersion curve �3�, valid, e.g., for the Cahn-
Hilliard equation: �=�q2−q4. Dotted line: Below threshold ��
�0�. Full line: Just above threshold. Dashed line: Well above
threshold. The vanishing of ��0� for any � is a consequence of the
traslational invariance of the CH equation in the “growth” direction.
Inset: The Ginzburg-Landau equation is one case where such invari-
ance is absent and the dispersion curve has the form �4�: �=�−q2.
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nonequilibrium systems �the quadratic term is nonvariational
in that it cannot be written as a functional derivative� when-
ever a dispersion relation is of type �3�. Several recent stud-
ies, especially in molecular beam epitaxy �MBE�, have re-
vealed an increasing evidence for the occurrence of
completely new types of equations, with a variety of dynam-
ics: Besides chaos, there are ordered multisoliton �8,9� solu-
tions, coarsening �10�, freezing of the wavelength accompa-
nied by a perpetual increase of the amplitude �11�. Moreover,
equations bearing strong resemblance with each other �12�
exhibit a completely different dynamics. Thus it is highly
desirable to extract some general criteria that allow one to
discriminate between various dynamics.

A central question that has remained open so far, and
which has been the subject of a recent brief exposition �13�,
was the understanding of the general conditions under which
dynamics should lead to coarsening, or rather to a selection
of a length scale. In this paper we shall generalize our proof
presented in �13� to a larger number of classes of nonlinear
equations, for which the same general criterion applies: The
sign of the phase diffusion coefficient D is linked to a prop-
erty of the steady state branch. More precisely, the sign of D
is shown to be the opposite of the sign of ���A�, the deriva-
tive of the wavelength � of the steady state with respect its
amplitude A. Therefore, coarsening occurs if �and only if� the
wavelength increases with the amplitude.

Another important new feature that constitutes a subject
of this paper, is the fact that the exploitation of the phase
diffusion coefficient D��� will allow us to derive analytically
the coarsening exponent, i.e., the law according to which the
wavelength of the pattern increases in time. For all known
nonlinear equations whose dispersion relation has the form
�3� or �4� and display coarsening, we have obtained the exact
value of the coarsening exponent, and we predict exponents
for other nonexploited yet equations. An important point is
that this is expected to work at any dimension. Indeed, the
derivation of the phase equation can be done in higher di-
mension as well. If our criterion, based on the idea that
�D������2 / t, remains valid at higher dimensions, it should
become a precious tool for a straightforward derivation of
the coarsening exponent at any dimension.

II. THE PHASE EQUATION METHOD

A. Generality

Coarsening of an ordered pattern occurs if steady state
periodic solutions are unstable with respect to wavelength
fluctuations. The phase equation method �14� allows to study
in a perturbative way the modulations of the phase � of the
pattern. For a periodic structure of period �, �=qx, where
q=2
 /� is a constant. If we perturb this structure, q acquires
a space and time dependence and the phase � is seen to
satisfy a diffusion equation, �t�=D�xx�. The quantity D,
called phase diffusion coefficient, is a function of the steady
state solutions and its sign determines the stable �D�0� or
unstable �D�0� character of a wavelength perturbation.

A negative value of D induces a coarsening process,2

whose typical time and length scales are related by �D����
��2 / t, as simply derived from the solution of the phase
diffusion equation: This relation allows to find the coarsen-
ing law ��t�. Therefore, the phase equation method not only
allows to determine if certain classes of partial differential
equations �PDE� display coarsening or not; it also allows to
find the coarsening laws, when D�0. In the rest of this
section, we are going to offer a short exposition of the phase
equation method without referring to any specific PDE. Ex-
plicit evolution equations will be treated in the next sections,
with some calculations relegated to the Appendix.

Let us consider a general PDE of the form3

�tu�x,t� = Ñ�u� �7�

where Ñ is an unspecified nonlinear operator, which is as-
sumed not to depend explicitly on space and time. u0�x� is a

periodic steady state solution: Ñ�u0�=0 and u0�x+��=u0�x�.
When studying the perturbation of a steady state, it is

useful to separate a fast spatial variable from slow time and
space dependencies. The stationary solution u0 does not de-
pend on time and it has a fast spatial dependence, which is
conveniently expressed through the phase �=qx. Once we
perturb the stationary solution,

u = u0 + �u1 + ¯ , �8�

the wavevector q=�x� gets a slow space and time depen-
dence: q=q�X ,T�, where X=�x and T=�t. Because of the
diffusive character of the phase variable, the exponent  is
equal to two. Space and time derivatives now read

�x = q�� + ��X �9a�

�t = ���T���� �9b�

where the second order term in the latter equation ��2�T� has
been neglected. Finally, along with the phase � it is useful to
introduce the slow phase ��X ,T�=���x , t�, so that q=�X�.

Replacing the u-expansion �8� and the derivates �9� with
respect to the new variables in Eq. �7�, we find an
�-expansion which must be vanished term by term. The zero

order equation is trivial, Ñ0�u0�=0: This equation is just the
rephrasing of the time-independent equation in terms of the

phase variable � �the subscript in Ñ0 means that Eqs. �9�
have been applied at zero order in �, i.e., �x=q���.

The first order equation is more complicated, because

both the operator Ñ and the solution u are �-expanded. On

very general grounds, we can rewrite �tu�x , t�=Ñ�u� as

2In principle a negative D could entail also a decreasing of �
�splitting�. However, this is inconsistent with the result dF /d��0
�see Sec. V� and with the stability of the flat interface at small
length scales.

3Coarsening scenarios are not affected by the presence of noise,
which is not taken into account throughout the article.
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���T����u0 = �Ñ0 + �Ñ1��u0 + �u1� �10�

where Ñ1 comes from first order contributions to the deriva-

tives �9�. If we use the Fréchet derivative �15�, L̃0, defined
through the relation

Ñ0�u0 + �u1� = Ñ0�u0� + �L̃0�u1� + O��2� �11�

we get

L̃0�u1� = ��T����u0 − Ñ1�u0� � g�u0,q,�� . �12�

At first order, therefore, we get an heterogeneous linear
equation �the Fréchet derivative of a nonlinear operator is

linear�. The translational invariance of the operator Ñ guar-
antees that ��u0 is solution of the homogeneous equation:
According to the Fredholm alternative theorem �16�, a solu-
tion for the heterogeneous equation may exist only if g is

orthogonal to the null space of the adjoint operator L̃†. In

simple words, if L̃†�v�=0, v and g must be orthogonal. This
condition, see Eq. �12�, reads

	v,��u0
�T� = 	v,Ñ1�u0�
 , �13�

where4 	f ,g
= �2
�−1�0
2
d�f*g.

It happens that Ñ1�u0� is proportional to �Xq=�XX�, and
the previous equation has the form of a diffusion equation for
the phase �,

�T� = D�XX� . �14�

B. Applications

1. The generalized Ginzburg-Landau equation

The �real� Ginzburg-Landau equation is written as

�tu = �u − u3� + uxx �15�

whose linear spectrum, for an excitation u�x , t�=exp��t
+ iqx� is ��q�=1−q2. This equation is the prototype for the
evolution of a nonconserved order parameter with two
equivalent stable solutions, u= ±1. Starting from the trivial
solution u=0, we have a linear instability leading to a loga-
rithmically slow coarsening process �17�.

This equation can be easily generalized to

�tu = B�u� + G�u�uxx, �16�

which will, therefore, be called generalized Ginzburg-
Landau �GGL� equation. If B�u��u and G�u��1 for small
u, the linear spectrum is unmodified, but the nonlinear be-
havior can be totally different, depending on the full �posi-
tive� expressions of B�u� and G�u�. Steady states are deter-
mined by the relation u0��x�=−B�u0� /G�u0�, so they
correspond to the trajectories of a classical particle moving
under the force −B�u0� /G�u0�.

Now, let us apply the expansions �8� for the order param-
eter and �9� for the derivatives to Eq. �16�. The first and

second spatial derivatives can also be written as

�x = q�� + ��XX�q �17a�

�xx = q2��� + ��XX�2q�q + 1���. �17b�

As anticipated in the previous section, the zero and first

order equations read Ñ0�u0�=0 and L̃0�u1�=g, where

Ñ0�u0� = B�u0� + G�u0�q2���u0 �18�

is the nonlinear operator defining the GGL equation,

L̃0�u1� = �B��u0� + G��u0�q2����u0� + G�u0�q2����u1

�19�

is its Fréchet derivative, and

g = ��T����u0 − ��XX��G�u0��2q�q + 1���u0. �20�

Because of translational invariance, L̃0���u0�=0. Its ad-
joint is easily found to be

L̃0
†�v� = q2����vG�u0�� + �B��u0� + G��u0�q2����u0��v .

�21�

If we define w=vG�u0�, the equation L̃0
†�v�=0 is identical to

L̃0�w�=0, so that we can choose w=��u0 and v
=��u0 /G�u0�.

The orthogonality condition between v and g reads

��T��	v,��u0
 − ��XX��	v,G�u0��2q�q + 1���u0
 = 0

�22�

and replacing the explicit expression for v, we get the phase
diffusion equation

�T� = D�XX� �23�

with

D =
�q	q���u0�2


 ���u0�2

G�u0� � �
D1

D2
. �24�

Assuming a positive G, the sign of D is fixed by the
increasing or decreasing character of 	q���u0�2
 with the
wavevector q. Reversing to the old variable x,

	q���u0�2
 =
1

2

�

0

�

dx�u0��
2 =

J

2

�25�

where J is the well-known action variable, whose derivative
with respect to the energy of the particle gives the period �.
The following relations are easily established:

D1 =
1

2


�J

�q
= −

�3

4
2� ��

�E
�−1

= −
�3

4
2

B�A�
G�A�

� ��

�A
�−1

�26�

where A is the amplitude of the oscillation, i.e., the �positive�
maximal value for u0�x�.

If G�u��1, a compact formula for D is4Sometimes we may also write 	f���
 to mean �2
�−1� f .
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D = −
�2B�A�
J��A��

G�A� � 1. �27�

In conclusion, a coarsening process occurs �D�0� if the
wavelength of the steady states increases with increasing
their amplitude. In Appendix A we make some general re-
marks on the behavior of ��A� for several different poten-
tials.

2. The generalized Cahn-Hilliard equation

The Cahn-Hilliard equation is the conserved version of
the Ginzburg-Landau equation,

�tu = − �xx��u − u3� + uxx� . �28�

The spatial average of the order parameter is time inde-
pendent, d	u
 /dt=0, and the linear spectrum is ��q�=q2

−q4: It, therefore, has a maximum at a finite value qu
=1/�2, called the most unstable wavevector. The linear re-
gime corresponds to an exponential unstable growth of such
mode, with a rate ��qu�, followed by a logarithmic
coarsening.5

The above equation can be made of wider application by
considering the following generalized Cahn-Hilliard �GCH�
equation

�tu = − C�u��xx�B�u� + G�u�uxx� . �29�

In Sec. III D we will discuss thoroughly the coarsening of
this class of models, because of its relevance for the crystal
growth of vicinal surfaces.6 In that case, the local height
z�x , t� of the steps satisfies the equation

�tz = − �x�B�m� + G�m��x�C�m��xm�� �30�

where m=�xz. If we pass to the new variable u�m�
=�0

mdsC�s� and take the spatial derivative of the above equa-
tion, we get the GCH equation �29�. It is worthnoting that
steady states are given by the equation B�u0�+G�u0�u0�= j0,
where j0 is a constant determined by the condition 	u0
=m0

that imposes the �conserved� average value of the order pa-
rameter. If steps are oriented along a high-symmetry orien-
tation, m0=0= j0. In the following we are considering this
case only, so the equation determining steady states, B�u0�
+G�u0�u0�=0, is the same as for the GGL equation.

If we proceed along the lines explained in Sec. II A and
keep in mind notations used in Sec. II B 1, the first order
equation in the small parameter � reads

− q2���L̃0�u1� = ��T��
��u0

C�u0�
+ ��XX��q2���

��G�u0��2q�q + 1���u0� . �31�

According to the Fredholm alternative theorem, the right
hand side must be orthogonal to the solution v of the equa-
tion

����L̃0�†�v� = L̃0
†���v = 0. �32�

According to the results of the previous section, we know
that ���v= ���u0� /G�u0�. The orthogonality condition now
reads

v,
��u0

C�u0����T�� + q2	v,����G�u0��2q�q + 1���u0�


���XX�� = 0. �33�

The quantity multiplying ��XX�� can be rewritten as

	v,����G�u0��2q�q + 1����u0


=  ��u0

G�uo�
,G�u0��2q�q + 1���u0� = �q	q���u0�2
 �34�

so we finally have ��T��=D��XX�� with

D = −
q2�q	q���u0�2


v,
��u0

C�u0�� �
q2D1

D̃2

. �35�

In Appendix B we prove that the denominator D̃2 is al-
ways positive. If C and G are �positive� constants the proof is
straightforward, because −	v��u0
= 	���v�u0
= 	u0

2
. The dif-
fusion coefficient �35� for the GCH equation is therefore
similar to the diffusion coefficient �24� for the nonconserved
GGL equation: Their sign is determined by the increasing or
decreasing character of ��A�, the wavelength of the steady
state, with respect to its amplitude. The q2 term in the nu-
merator of �35� is evidence of the conservation law, i.e., of
the second derivative �xx in Eq. �29�. The denominators D2

and D̃2 differ: this is irrelevant for the sign of D, but it is
relevant for the coarsening law.

If C�u��G�u��1, formulas simplify:

D1=−�3B�A� /4
2��A�� and D̃2= 	u0
2
= I /�, where I= �u0

2�x�
has the same role as J= ���xu0�2 in the nonconserved model.
Putting everything together we obtain

D = −
�2B�A�
I��A��

C�A� � G�A� � 1. �36�

3. The generalized Swift-Hohenberg equation

Both the �generalized� GL and CH equations have a linear
spectrum whose unstable band extends to q=0, so that active
modes of arbitrarily large wavelength exist. In the Swift-
Hohenberg equation we can tune a parameter � so that to
change the unstable band. The standard form of the equation
is

�tu = �u − �1 + �xx�2u − u3 = − �x
4u − 2�x

2u − �1 − ��u − u3.

�37�

Linear stability analysis for a single harmonic u�x , t�
=exp��t+ iqx� gives the spectrum

5The coarsening of the nonconserved �Ginzburg-Landau� and con-
served �Cahn-Hilliard� models differ if noise is present: ��t�� t1/2

in the former case and ��t�� t1/3 in the latter case.
6A vicinal surface is a surface which is slightly miscut from a

high-symmetry orientation. It looks like a flight of stairs with steps
of atomic height separating large terraces.
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��q� = � − �1 − q2�2 �38�

and for positive � there is a finite unstable band ���q��0�
extending from q1=�1−�� to q2=�1+��. For �=1, the un-
stable band is the interval �0,�2�. The most unstable
wavevector is qu=1 for any �. For small � the unstable band
is narrow; in fact, for ��0.36, q1�q2 /2 and period dou-
bling is not allowed. In other words studying coarsening for
the Swift-Hohenberg equation close to the threshold �=0 is
not very interesting: Nonetheless we will write the phase
diffusion equation for any � and for a generalized form of the
Swift-Hohenberg equation as well.

The zero order equation is easy to write

Ñ0�u0� � − q4��
4 u0 − 2q2��

2 u0 − �1 − ��u0 − u0
3 = 0 �39�

and the first order equation has the expected form L̃0�u1�
=g, where

L̃0 � − q4��
4 − 2q2��

2 − �1 − �� − 3u0
2 �40�

is the Fréchet derivative of Ñ0 and

g � ��T����u0 + 2��XX����2q3�q + 3q2���
3 u0

+ �2q�q + 1���uo� . �41�

The operator L̃0 is self-adjoint, so the solution of the ho-

mogeneous equation L̃0
†�v�=0 is immediately found, because

of the translational invariance of Ñ0 along x: v=��u0. We,
therefore, have

��T��	���u0�2
 = − ��XX���	��u0�4q3�q + 6q2���
3 u0


+ 2	��u0�2q�q + 1���u0
� . �42�

It is easy to check that both terms appearing in square
brackets on the right hand side can be written as �q�¯�:

	��u0�4q3�q + 6q2���
3 u0
 = − �q	2q3���

2 u0�2
 �43a�

�	��u0�2q�q + 1���u0
� = �q	q���u0�2
 �43b�

so that the phase diffusion coefficients reads

D =
�q�2q3	���

2 u0�2
 − 2q	���u0�2
�
	���u0�2


. �44�

Now let us generalize this result to the equation

�tu = �
n�0

cn�x
nu + P�u� �45�

where n is assumed even and P�u� an odd function, in order
to preserve the symmetries x→−x and u→−u. Therefore,
n=2k, with k�1. We report here only the final result for the
phase diffusion coefficient:

D =
1

2	���u0�2
�n

�− 1�k+1ncn�q	qn−1���
n/2u0�2
 . �46�

The standard Swift-Hohenberg equation corresponds to
c2=−2 and c4=−1. The quantity �−1�k+1ncnqn−1 /2, therefore,
gives 2q3 for n=4 ans −2q for n=2, as shown by Eq. �44�.

III. THE COARSENING EXPONENT

We now want to use the results obtained in the previous
section for the phase diffusion coefficient D in order to get
the coarsening law ��t�. In one-dimensional systems, noise
may be relevant and change the coarsening law. In the fol-
lowing we will restrict our analysis to the deterministic equa-
tions.

A negative D implies an unstable behavior of the phase
diffusion equation, �t�=−�D��xx�, which displays an expo-
nential growth �we have reversed to the old coordinates for
the sake of clarity�: �=exp�t /��exp�2
ix /��, with �2
�2�D�
=�2 /� �in the following the time scale � will just be written
as t�. The relation �D������2 / t will, therefore, be used to
obtain the coarsening law ��t�: It will be done for several
models displaying the scenario of perpetual coarsening �i.e.,
���A��0 for diverging ��.

A. The standard Ginzburg-Landau and Cahn-Hilliard models

It is well known �17� that in the absence of noise, both the
nonconserved GL equation �15� and the conserved CH equa-
tion �28� display logarithmic coarsening, ��t�� ln t. Let us
remember that steady states correspond to the trajectories of
a classical particle moving in the potential V�u�=u2 /2
−u4 /4. The wavelength of the steady state, i.e., the oscilla-
tion period, diverges as the amplitude A goes to one. This
limit corresponds to the “late stage” regime in the dynamical
problem, and the profile of the order parameter is a sequence
of kinks and antikinks. The kink �antikink� is the stationary
solution u+�x� �u−�x�� which connects u=−1 �u=1� at
x=−� to u=1 �u=−1� at x=�, u±�x�= ±tanh�x /�2�. As
coarsening proceeds, kinks and antikinks annihilate.

It is convenient to introduce the new variable Q�x�=1
−u�x�. In the mechanical analogy, if the particle leaves �with
zero velocity� from u�0�=A=1−Q0, the quantity Q�x�=1
−u�x� starts to grow exponentially �this follows from the
tanh�x /�2� solution,7 Q�x��Q0 exp��2x��. The particle
passes a diverging time close to x= ±1 because x= ±1 corre-
spond to the potential maxima where the velocity of the par-
ticle vanishes while its position remain finite. Consequently,
it is straightforward to write8 that �� ln�1/Q0��−ln�1−A�
and calculate the derivative �A���1−A�−1�exp �.

In order to apply Eq. �27� and find D for the nonconserved
model, we also need B�A�=A−A3�2 exp�−�� and J; the lat-
ter quantity is the classical action and it is easy to understand
that it keeps finite in the limit A→1, because it is the area in
the phase space enclosed in the limiting trajectory. So, the
relation �D������2 / t gives �A� /B�A�� t and finally

��t� � ln t standard GL eq. �47�

7This may also be directly seen by expanding the differential
equation �xxu+u−u3=0 about u=1. Expansion to leading order in
Q=1−u yields �xxQ−2Q=0, from which the solution Q=Q0e�2x

follows.
8It is possible to calculate more rigorously the period of oscilla-

tion from the exact relation �=2�−A
A du / ��xu�, which can be ex-

pressed in terms of an elliptic integral. In the limit A→1 it diverges
logarithmically as −ln�1−A�.
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If we compare Eq. �27� with Eq. �36�, we find that the
phase diffusion coefficient D for the nonconserved model is
equal to that of the conserved model, once J= ���xu0�2 has
been replaced by I= ��u0�2, which is of order � because u0 is
almost everywhere equal to one. This replacement is irrel-
evant in our case, because the relation exp�2��� t, giving
rise to Eq. �47� in the nonconserved case, is replaced by
� exp�2��� t in the present, conserved case, so that a loga-
rithmic coarsening is found again:

��t� � ln t standard CH eq. �48�

B. Other models with uniform stable solutions

The only features of the standard GL and CH models
which determine the coarsening laws �47� and �48� are the
presence of symmetric maxima in V�u� for finite u= ū=1 and
the quadratic behavior close to the maxima, V�u��V�ū�
−a�u− ū�2. For any generalization of such equations, �tu
=B�u�+uxx and �tu=−�xx�B�u�+uxx�, if V�u�=�duB�u� still
has such properties, the coarsening will be logarithmic inde-
pendently of the details of B�u�. Since a quadratic behavior
close to a maximum is general, we can conclude that a loga-
rithmic coarsening is common to most of nonconserved and
conserved models where B�u� vanishes for finite u.

In this section we investigate situations where the as-
sumption that V�u� has a quadratic behavior close to the
maxima is relaxed. They corresponds to very special situa-
tions, nonetheless they are interesting in principle because
��t� is no more logarithmic and because these models con-
stitute a bridge between the standard GL/CH models and the
models without uniform stable solutions, discussed in the
next section. Let us now consider a class of models where
V�u� has a minimum in u=0 �linearly unstable profile� and
two symmetric maxima in u= ±1, with V�u��V�1�−a�u
−1�� ���2� close to u=1. Again, we use Q�x�=1−u�x� and
Q0=1−A, A being the amplitude of the oscillation.

The wavelength is given by

� � �
Q0

1 dQ

�Q� − Q0
�

�
1

Q0
�/2−1 �49�

and it is easily found that J�1, I��, �A��Q0
−�/2, B�A�

�Q0
�−1.

1. The nonconserved case

The relation

�2

t
� �D� =

�2B�A�
J��A��

�50�

gives

t �
Q0

−�/2

Q0
�−1 � ��3�−2�/��−2� �51�

so that ��t�� tn with n= ��−2� / �3�−2�.

2. The conserved case

If the order parameter is conserved, we simply need to
replace J�1 with I�� in Eq. �50�, so as to obtain

t � ���3�−2�/��−2� � ��4�−4�/��−2�. �52�

The coarsening exponent is, therefore, equal to n= ��
−2� / �4�−4�. We observe that in the limit �→2 we recover
logarithmic coarsening �n=0� both in the nonconserved and
conserved case, as it should be. We also remark that in the
opposite limit �→� we get n=1/3 in the nonconserved case
and n=1/4 in the conserved case, which make a bridge to-
wards the models discussed in the next section.

C. Models without uniform stable solutions

The models considered in the previous subsection have
uniform stable solutions, u= ±1: The linear instability of the
trivial solution u=0 leads to the formation of domains where
the order parameter is alternatively equal to ±1, separated by
domain walls, called kinks and antikinks. This property is
related to the fact that B�u�=u−u3 vanishes for finite u �up to
a sign, B�u� is the force in the mechanical analogy for the
steady states�.

In the following we are considering a modified class of
models, where B�u� vanishes in the limit u→� only, so that
the potential V�u�=�duB�u� does not have maxima at finite
u. Therefore, it is not possible to define “domains” wherein
the order parameter takes a constant value. These models
�18�, which may be relevant for the epitaxial growth of a
high-symmetry crystal surface �10�, are defined as follows
��1�:

�tu = B�u� + uxx �53�

�tu = − �xx�B�u� + uxx� �54�

B�u� =
u

�1 + u2� �55�

V�u� = −
1

2� − 1�
1

�1 + u2�−1.
�56�

Steady states correspond to periodic oscillations of a par-
ticle in the potential V�u� around the minimum in u=0. In-
creasing the amplitude A, the energy of the particle goes to
zero as E�−A−�2−2� and the motion can be split into two
parts: The motion in a finite region around u=0, which does
not depend on A, and the motion for large u, where V�u�
�1/u�2−2� and simple dimensional analysis can be used. As
an example, let us evaluate the wavelength through the rela-
tion �where the “acceleration” is proportional to the “force”
in the mechanical language�

A

�2 �
1

A2−1 Þ � � A. �57�

In an analogous way, we can evaluate the action J
���A /��2���2/�−1, which is slighty more complicated, be-
cause the asymptotic contribution vanishes for �2: In this
case the finite, constant contribution coming from the motion
within the “close region” dominates. Therefore, J���2/�−1 if
�2 and J�1 if �2. As for the quantity I, appearing in
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the expression �36� for D, conserved case, we simply have
I��A2���2/�+1. Finally, B�A����1/�−2.

1. The nonconserved case

From Eq. �27� we find

D �
�2��1/�−2

��2/�−1�1−�1/� � 1  � 2 �58a�

D �
�2��1/�−2

�1−�1/� � ��2/�−1  � 2. �58b�

The phase diffusion coefficient is constant for  smaller
than two, which means that ��t�� t1/2. For  larger than two,
��2/�−1��2 / t gives ��t�� t/�3−2�. We can sum up our re-
sults, ��t�� tn, with

n =
1

2
 � 2 �59a�

n =


3 − 2
 � 2. �59b�

The coarsening exponent varies with continuity from n
=1/2 for �2 to n=1/3 for →�. These results confirm
what had already been found by one of us with a different
approach �18�.

2. The conserved case

From Eq. �36� we have

D �
�2��1/�−2

��2/�+1�1−�1/� �
1

�2 �60�

and therefore

��t� � t1/4. �61�

The constant coarsening exponent n=1/4 clashes with
numerical results found in Ref. �18�, n=1/4 for �2 and
n= / �5−2� for �2. The opinion of the authors of Ref.
�18� is that for �2 a crossover should exist from n
= / �5−2� to n=1/4, the correct asymptotic exponent. De-
tails and supporting arguments will be given elsewhere �19�.

D. Conserved models for crystal growth

It is interesting to consider a model of physical interest
which belongs to the class of the full generalized Cahn-
Hilliard equations, meaning that all the functions B�u�, C�u�,
and G�u� appearing in �29� are not trivial. The starting point
is Eq. �30�,

�tz = − �x�B�m� + G�m��x�C�m��xm��

which describes the meandering of a step, or—more
generally—the meandering of a train of steps moving in
phase. z is the local displacement of the step with respect to
its straight position and m=�xz is the local slope of the step.

We do not give details here about the origin of the previ-
ous equation, which is presented in �12�, but just write the
explicit form of the functions B, G, and C:

B�m� =
m

1 + m2 , G�m� =
1 + ��1 + m2

�1 + ���1 + m2�
, �62a�

C�m� =
1 + c�1 + m2��1 + 2m2�

�1 + c��1 + m2�3/2 �62b�

and define the meaning of the two adimensional, positive
parameters appearing there: � is the relative strength be-
tween the two relaxing mechanisms, line diffusion and ter-
race diffusion; c is a measure of the elastic coupling between
steps.

If we pass to the new variable u=�0
mdsC�s�, we get Eq.

�29�,

�tu = − C�u��xx�B�u� + G�u�uxx� �29��

whose steady states, for high-symmetry steps, are given by
the equation uxx=−B�u� /G�u�. In Appendix C we study the
potential V�u�=�du�B�u� /G�u�� and the dynamical scenarios
emerging from �A�. We give here the results only.

If c=0 �see Fig. 3�, �A��0, while there is asymptotic
coarsening if c�0 �see Figs. 4 and 5�. Asymptotic coarsen-
ing means that �A��0 for large enough A: According to the
values of c and �, ��A� may be always increasing or it may
have a minimum followed by �A��0: The distinction be-
tween the two cases is not relevant for the dynamics and it
will not be further considered. Let us now determine the
asymptotic behavior of all the relevant quantities, when c
�0.

In the limit of large m, we have C�m��m and B�m�
�1/m. As for G, G�m��1/m2 and G�m��1/m, for �=0
and ��0, respectively. Since u��mdsC�s��m2, m��u so
that C�u���u, B�u��1/�u and G�u��1/u ��=0� or G�u�
�1/�u ���0�. The potential V�u� has the form V�u��u3/2

��=0, Fig. 4� or V�u��u ���0, Fig. 5�. The wavelength
�see Appendix A� is ��A1/4 for �=0 �Fig. 4� and ���A for
��0 �Fig. 5�. Similar and straightforward relations can be
determined and the following general expression for the
phase diffusion coefficient is established,

FIG. 3. ��A� for Eq. �29�, c=0 and �=0 �see Eq. �62��. V�u�
=−�1−u2 �inset� and ���A��0 �main, full circles�. The dashed line
is the harmonic potential u2 /2. If c=0, there is no coarsening what-
ever is �.
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D �
�AG�A�

�2 �
�2

t
�63�

and the coarsening exponent is finally found to be

��t� � t1/6 � = 0 �64a�

��t� � t1/4 � � 0. �64b�

These results agree with both the numerical solution and
the heuristic arguments presented in �12�.

E. Discussion

In this section we have applied the results of Sec. II to
find the coarsening law ��t� for some classes of models dis-
playing asymptotic coarsening, that is to say having a nega-
tive phase diffusion coefficient D for large amplitude �if the
amplitude A has an upper limit Amax, large means A→Amax�.
In particular, in Secs. III A–III C we have considered models
entering into the classes

�tu = B�u� + uxx Þ t �
J��A��
B�A�

�65a�

�tu = − �xx�B�u� + uxx� Þ t �
I��A��
B�A�

�65b�

where we have also indicated on the right the relations lead-
ing to the coarsening laws and deriving from �D���2 / t, with
D given in Eqs. �27� and �36�.

Passing from the standard GL/CH models �Sec. III A�, to
models where V�u� have �nonquadratic� maxima at finite u
�Sec. III B� and to models where V�u� has no maxima at all
at finite u �Sec. III C�, the coarsening exponents change with
continuity from n=0 �logarithmic coarsening� to n=1/2 for
the nonconserved models and from n=0 to n=1/4 for the
conserved models.

The conservation law, as expected, always slows down
the coarsening process. Formally, this corresponds to replace
the action J with the quantity I in the denominator of D. In
most cases, J is a constant while I increases as ��, with �
�1: A smaller D implies a lower coarsening. We remark that
only in a very special case �models without uniform stable
solutions and �2�, I /J��2: When this happens, the
double derivative �xx—which characterizes the conserved
models—is equivalent �as for the coarsening law� to the fac-
tor 1 /�2. We stress again that this is an exception, it is not
the rule.

Section III D has been devoted to a class of conserved
models which are relevant for the physical problem of a
growing crystal. In that case the full expression �35� for D
must be considered �the result is reported in Eqs. �64a� and
�64b��. It is remarkable that for all the models we have con-
sidered, we found n�1/4 and n�1/2 for conserved and
nonconserved models, respectively. It would be interesting to
understand how general these inequalities are.9

IV. SWIFT-HOHENBERG EQUATION AND COARSENING

Let us start from the standard Swift-Hohenberg equation
�37�,

�tu = − �x
4u − 2�x

2u − �1 − ��u − u3 �66�

whose linear dispersion curve is ��q�=�− �q2−1�2. The
phase diffusion coefficient �see Eq. �44�� is

D = 2q
�q�	uxx

2 
 − 	ux
2
�

	ux
2


�67�

and it should be compared to the limiting expression, valid
for �→0,

DE = −
1

2
��� +

����2

�
� = −

1

2�

d

dq
����� �68�

where the subscript E refers to the Eckhaus instability and
prime denotes derivative with respect to q.

9The condition n�1/2 for the nonconserved models is equivalent
to say that �D���� does not diverge with increasing �, which seems
to be a fairly reasonable condition.

FIG. 4. ��A� for Eq. �29�, c=� and �=0. Inset: V�u�
=�1+m2�2m2−1� /3, with m2= ��1+4u2−1� /2. V�u���u�3/2 for
large u and ���A��0 �main, full circles�. For large amplitude, �
�A1/4 �main, full line�. The dashed line in the inset is the harmonic
potential, u2 /2. If c�0 there is coarsening, whose law depends on
�. For �=0, ��t�� t1/6.

FIG. 5. ��A� for Eq. �29�, c=� and �=�. Inset: V�u�=m2

− �1/2�ln�1+m2�, with m2= ��1+4u2−1� /2. V�u���u� for large u
and ���A��0 �main, full circles�. For large amplitude, ���A
�main, full line�. The dashed line in the inset is the harmonic po-
tential, u2 /2. For ��0, ��t�� t1/4.
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Steady states satisfy the equation LSH�u�−u3=0, where
LSH�u� means the linear part of the operator appearing on the
right hand side of Eq. �66�. In the one-harmonic approxima-
tion, u�x�=A�q�cos�qx� and the steady condition writes
��q�u=u3 implying

��q� = 	u2
 = A2�q�/2. �69�

In the same spirit we get 	ux
2
=q2A2 /2=q2� and 	uxx

2 

=q4A2 /2=q4�, so that D reads

D =
2

q�

d

dq
���q4 − q2�� . �70�

Close to the threshold, �→0, q=1+K �with K�1�,
��q�=�−4K2 and ��=−8K. Finally, we get

D =
4

�

d

dq
�K�� = DE �71�

so that the expression for D is equal to the well-known ex-
pression for DE. It must be noted, see Eq. �69�, that A van-
ishes at q=q2 and at q=q1, as � does, so that A undergoes a
fold singularity at the center of the band. This is imposed by
symmetry, since in the vicinity of threshold the band of ac-
tive modes is symmetric. In this case we are in the situation
with the dispersion relation �1�. The phase diffusion coeffi-
cient must also be symmetric with respect to the center and,
therefore, it can change sign at the fold, due to this symme-
try. Thus D does not have the sign of A� in this case. None-
theless, in the vicinity of q2 the sign of D is still given by A�,
as shown here below. Our speculation is that the existence of
a fold is likely to destroy the simple link between D and A�.

A meaningful expression for D can be found also for finite
�, close to q2=�1+�� �let us remind that ��q1,2�=0 and
q2�q1�. In this limit we get ���q�����q2�=4q2−4q2

3 and

D = 2�q2
3 − q2�

1

�

d�

dq
= DE �72�

so that D is equal to a positive quantity times d� /dq. Since
��q�=A2�q� /2, the sign of D is equal to the sign of dA /dq.
This result follows from a perturbative scheme where use has
been made of the fact that u�cos�qx�. This is legitimate as
long as one considers small deviations from the threshold. If
� is not small, or if �=1 we fall in the dispersion relation �3�.
As one deviates from q2 towards the center of the band,
higher and higher harmonics become active, and one should
in general find numerically the steady state solutions in order
to ascertain whether D is positive or negative. In the general
case, we have not been able to establish a link between D
and the slope of the steady state branch as done in the pre-
vious sections. Our belief, on which some evidences will be
reported on in the future, is that depending on the class of
equations, it is not always the slope of the steady state solu-
tion that provides direct information on the nonlinear dynam-
ics, but somewhat a bit more abstract quantities, as we have
found, for example, by investigating the KS equation, an-
other question on which we hope to report in the near future
�20�. Numerical solutions of the SH equation in the limit �

=1 reveal a fold singularity in the branch ��A�, as shown in
Fig. 6.

V. EQUATIONS WITH A POTENTIAL

Some of the equations discussed in Sec. II B are derivable
from a potential: It is, therefore, possible to define a function
F which is minimized by the dynamics. This is always the
case for the generalized Ginzburg-Landau equation �16�,
which can be written as

�tu = B�u� + G�u�uxx = − G�u�
�F
�u

�73�

F�u� =� dx�1

2
�ux�2 − V�u�� �74�

where V�u� is the potential entering in the study of the sta-
tionary solutions, i.e., V��u�=B�u� /G�u�. If we evaluate the
time derivative of F we find

dF
dt

=� dx
�F
�u

ut = −� dxG�u���F
�u

�2

� 0, �75�

if G�u��0.
The generalized Cahn-Hilliard equation �29� can always

be written as

�tu = − C�u��xx�B�u� + G�u�uxx� = C�u��xx�G�u�
�F
�u
� .

�76�

If C�u�=G�u�, we find

dF
dt

= −� dx��x�C�u�
�F
�u

��2

� 0. �77�

We now want to evaluate F for the steady states. The
pseudo free-energy F is nothing but the integral of the La-
grangian function L for the mechanical analogy defining the
stationary solutions. If E= �ux�2 /2+V�u� is the energy in the
mechanical analogy and J is the action,

FIG. 6. ��A� for the Swift-Hohenberg equation �66�, with �=1.
The amplitude A is defined as A= ��dxu2�x� /��1/2.
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F�u��x�� = �� J

�
− E� �78�

where � is the length of the one-dimensional �1D� interface.
We have also made explicit the dependence on � of the sta-
tionary solutions, u��x�. We want to determine the depen-
dence on � of the pseudo free-energy,

dF
d�

= �
d

d�
� J

�
− E� = − �

J

�2 � 0 �79�

where we have used that �EJ=�. This result shows that sta-
tionary solutions with a greater wavelength always have a
lower energy. Since dynamics minimizes F, this result sup-
ports the idea that coarsening occurs when �A��0.

If the curve ��A� has extrema, there are different steady
states with the same value of �: Let us consider two of such
states, separated by only one extremum, ��A1�=��A2�=�0.
We ask what state has the lower free energy. If F1,2
=F�u��A1,2�� and we label the different steady states with E
=V�A� rather than with A, we get

F2 − F1

�
=

J�E2� − J�E1�
�0

− �E2 − E1�

=
1

�0
�

E1

E2

dE��E� − �E2 − E1�

=
E2 − E1

�0
��̄ − �0� �80�

where �̄ is the average � in the interval �E1 ,E2�.
Therefore, if ��A� has a maximum between A1 and A2,

F1�F2; if ��A� has a minimum between A1 and A2, F2

�F1. So, if two steady states have the same wavelength, the
state with lower free-energy is always the state correspond-
ing to a positive value of �A�.

Let us resume what we found in this section. For the GGL
equations and a class of the GCH equations �C�u�=G�u��,
there is a functional F which is minimized by the dynamics,
dF /dt�0; if u��x� is a stationary solution of period � and
we evaluate the free-energy F�u��x�� for the steady branch
��A�, then �d /d��F�u��x���0, i.e., the free-energy de-
creases with increasing the wavelength. We are now inter-
ested to study the variation of F when the amplitude of u��x�
is changed, keeping the period fixed.

Since u��x� minimizes F, it is necessary to go to the sec-
ond order. If u�x�=u��x�+��x�, we get

�F � F�u��x� + ��x�� − F�u��x��

= −
1

2
� dx�V��u���2�x� + ��x����x�� �81�

We are interested in fluctuations of the amplitude, so we take
��x�=�u��x� and we ask if �F is an increasing or decreasing
function of �:

�F =
�2

2
� dx�u��x�V��u�� − u�

2�x�V��u��� . �82�

What is relevant is the sign of the integral,

Q =� dx�u�x�V��u� − u2�x�V��u�� �83�

where we have removed the subscript � to lighten notation,
keeping in mind that u�x� is a stationary solution of period �.
A positive �negative� Q means that u�x� is stable �unstable�
against fluctuations of the amplitude: We want to relate such
property to the behavior of the curve ��A�.

Since V�u� is an even function, we can define Ṽ�u2�
=V�u�. Since V�=2uṼ� and V�=2V�+4u2Ṽ�, we find

Q = − 8� dxu4Ṽ��u2� . �84�

In Appendix A, Eqs. �A5� and �A6�, we show that the sign

of ���A� is related to the sign of Ṽ��u2�. For convex or con-

cave potentials Ṽ�u2�, we can conclude that the sign of �F is
equal to the sign of ���A�: If ���A��0 we have phase insta-
bility �i.e., coarsening�, but amplitude stability; if ���A��0
we have phase stability �i.e., constant wavelength�, but am-

plitude instability. If the curvature of Ṽ�u2� changes sign, it is
no longer possible to establish such a strict relation between
the signs of �F and ���A� for any value of A.

VI. SUMMARY AND PERSPECTIVES

A. Results

The two major results of the present work are �i� the deri-
vation of a criterion for coarsening based on the behavior of
the steady state solutions. This criterion holds for several
classes of nonlinear equations that are encountered in various
nonequilibrium systems. The link between the steady state
behavior and coarsening �which is a dynamical feature� has
been made possible thanks to the phase diffusion equation;
�ii� the exploitation of the phase diffusion coefficient has
allowed us to derive the coarsening law. For all known ex-
amples which fall within our classes, we have captured the
exact coarsening exponent. Our analysis has allowed us to
make a quite general statement about the law of coarsening
and on the relevant quantities that are decisive in fixing the
coarsening exponent.

B. Extension to higher dimension

Usually, an analytical derivation of the coarsening expo-
nent is made for some equations where their one-
dimensional character is essential. While a link between the
phase diffusion coefficient and the behavior of a steady state
branch proves presently difficult to achieve beyond 1D, the
derivation of the phase diffusion equation can be made at
arbitrary dimension. Our idea according to which t��2 /D is
worth testing in higher dimension. If it works, since D con-
tains only information on the periodic steady state solutions,
it is sufficient to obtain these solutions to determine the
coarsening law. A numerical determination of these solutions
is straightforward and thus the behavior of D as a function of
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� can easily be extracted. Then the coarsening law can be
obtained without resorting to a time-dependent simulation.

It must be noted, however, that, for example, in two di-
mensions �2D�, there are two independent phase diffusion
coefficients. There are, besides bands, five Bravais lattices in
2D and one has first to determine the steady state solutions,
which depend on the symmetries of the equation. If we take
bands as a starting steady state solution, then there are two
principal directions for the phase evolution: The phase diffu-
sion along the band, and the one orthogonal to it. Usually, in
the vicinity of a threshold �as in the case of Eq. �1�� diffusion
along the band exhibits a zig-zag instability, while the one in
the orthogonal direction is associated with the Eckhaus in-
stability �1�. Would only one of the two coefficients be rel-
evant for the coarsening, or rather is there a competition
between the two directions? It is clear that if the bands coa-
lesce by keeping their steady state like symmetry �bands
keep their integrity�, then, for the CH equation, a logarithmic
coarsening should prevail. We know, however, that the coars-
ening law in 2D is �� t1/3 �21�. From this, we expect that
both coefficients were essential for the coarsening.

One possibility would be to make use of the idea of dif-
fusion law ��2 /D� t� in the anisotropic case. For example, if
we have two diffusion coefficients Dx and Dy along the two
directions, by absorbing these coefficients in x and y coordi-
nates in the phase equation, we arrive to ��x /�Dx�2

+ ��y /�Dy�2� t, where �x
2+�y

2=�2, and Dx and Dy depend on
�x and �y. At long time scales, it is appealing to expect that
isotropy �provided the starting equation enjoys the rotational
symmetry� should be, in principle, restored and �x��y � tn

�where n is the coarsening exponent�, and this should com-
plete the extraction of the scaling with time. It is an impor-
tant task for future investigations to clarify this point.

Studies on coarsening in more than 1D may be fairly
complicated, even if a lot of progress has been done in the
comprehension of phase ordering phenomena �21�. As a mat-
ter of fact, in more than 1D large scale temporal simulations
which are performed with the aim to ascertain the coarsening
law are extremely time consuming �even prohibitive in sev-
eral cases�. Note that, as it has been discussed in Sec. III C,
even in 1D the cross-over to the true asymptotic regime may
prove to be very long. Thus, if our idea based on the analysis
of phase diffusion should work in 2D �and higher dimen-
sion�, it would constitute an important way for the determi-
nation of the coarsening exponent. We intend to investigate
this matter on the GL equation in 2D, and then possibly on
other equations.

C. More about the phase equation

The idea according to which the diffusion coefficient,
even in 1D, allows one to determine the coarsening law �al-
though it has proven to be successful for all classes of equa-
tions discussed here� calls for additional comments. Indeed,
because the phase equation �t�=D�xx� exhibits a negative
diffusion coefficient in the coarsening regime, the phase in-
stability leads to an exponential increase of the phase in the
course of time. One therefore needs to push the expansion in
power series of � to higher orders. It is clear that the next

order should lead to the following linear term −��xxxx� with
��0 in order to prevent arbitrarily small wavelength fluc-
tuations. Nonlinear terms are also needed for the nonlinear
saturation. From general considerations we expect the first
nonlinear term to have the form �x��xx�. This is dictated by
the fact that the phase diffusion equation should enjoy invari-
ance under the transformation: x→−x and �→−�.

Why and how does the determination of the coarsening
exponent depend solely on the inspection of D is not com-
pletely understood. One possible heuristic explanation can be
put forward, namely the power counting argument where at
large scales only the first of these terms is decisive. It is of
great importance to clarify this point further, for example, by
analyzing the renormalization flow of the nonlinear phase
equation at large time.

D. From coarsening to chaos

All the evolution equations for which our general criterion
based on ��A� has been derived, exhibit the following dy-
namics: �i� They undergo perpetual coarsening, �ii� or they
develop a pattern with a frozen wavelength while the ampli-
tude increases indefinitely in the course of time. If, for ex-
ample, the standard CH equation �6� is modified in the fol-
lowing manner

�tu = − �xx�u + �xxu − u3� + �u�xu �85�

where � is a parameter �taken to be positive without restric-
tion�, we obtain a mixture between the CH and KS equa-
tions. For �=0 we recover the CH equation while for �
→� we obtain the KS limit �upon an appropriate rescaling,
u→u /��. Thus for small enough values of � a coarsening
may be expected, while for large values chaos should pre-
vail. The behavior of this solution was considered by
Golovin et al. �22�. In the spirit of our analysis we can derive
the phase diffusion equation, or equivalently we can describe
the stability of steady state solutions in a Floquet-Bloch pic-
ture. The branch of steady state solutions in the plane
�wavelength-amplitude� is monotonous up to �=0.47, be-
yond which the branch exhibits a fold singularity. Numerical
analysis seems to indicate that the transition from coarsening
to noncoarsening occurs at this value.

While it could not be proven in general that there is a link
between the branch of the steady state solutions and the in-
stability eigenvalues, it is surprising to see that coarsening
stops when the branch undergoes a fold singularity. On the
light of the various situations encountered here, it is appeal-
ing to speculate that whether coarsening occurs or not should
be related to considerations of the behavior of the steady
state solutions only. While for the class of equations like �30�
the criterion could be related to the slope ��A�, the criterion
may assume a more abstract form for more general equa-
tions. It is hoped to investigate this matter further in the
future.

APPENDIX A: GENERAL CONSIDERATIONS ON �„A…

Stationary solutions, which play the dominant role in our
treatment, in most cases are determined by a Newton-type
equation,
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uxx = F�u� �A1�

where the potential V�u�=−�duF�u� is symmetric and has a
�quadratic� minimum in u=0. We are interested in periodic
solutions u0�x�, which correspond to oscillations of period �
and amplitude A within the potential well V�u�. We want to
give general criteria to understand if � is an increasing or a
decreasing function of A. More precisely, we are showing
how is possible to determine in an easy way the behavior of
��A� for small and large amplitude A. This does not cover all
possibilities, because we may find funny potentials V�u�
which produce an oscillating function ��A�: In these cases a
numerical analysis is necessary each time. In all the other
cases, when ��A� has no more than one extremum, the fol-
lowing analysis applies. At the end of this section we are also
providing an exact expression for d� /dA, whatever is the
potential V�u�.

It is trivial that in the harmonic approximation, V�u�
�u2, � is constant: From a dynamical point of view, this
corresponds to the linear regime. The behavior at small am-
plitude A is, therefore, defined by the sign of the quartic term
in the potential, the third one being absent because V�u� is
symmetric: V�u��u2+a4u4. It is easy to understand and
straightforward to show �via perturbation theory �23�� that
�A� has the sign opposite to a4: � is an increasing �decreas-
ing� function of A if a4 is negative �positive�.

As a general rule, if the potential is steeper than a pa-
rabola, � decreases with increasing the amplitude; in the op-
posite case, �A��0. Therefore, if V�u���u�k for large u, �
increases with A if k�2. Using the law of mechanical simi-
larity �24�, i.e., scale analysis, we can find that

V�u� � �u�k
A

�2 � Ak−1 � � A1−k/2. �A2�

If V�u� increases faster than a power law, e.g., exponen-
tially, �A��0 of course. The same is true if V�u� diverges at
finite amplitude, e.g., V�u�=1/ �1−u2�, or if V�u� goes to a
finite value for finite amplitude, but with a diverging force,
e.g., V�u�=−�1−u2.

If V�u� increases slower than a power law, e.g., logarith-
mically, or it goes to a constant for infinite u, or it has a
maximum at finite amplitude, in all these cases � is an in-
creasing function of A.

Now let us turn to a more rigorous analysis of ���A�. The
exact expression for the period � is

� = 2�2�
0

A du
�V�A� − V�u�

. �A3�

If we use the formula

d

dA
�

0

A

duf�u,A� =
1

A
�

0

A

du�A�Af�u,A� + u�uf�u,A� + f�u,A��

�A4�

we get

d�

dA
=

�2

A
�

0

A

du
R�A� − R�u�

�V�A� − V�u��3/2 �A5�

where R�u�=2V�u�−uV��u�. If, following Sec. V, we intro-

duce the function Ṽ�u2�=V�u�, we find that

R��u� = − 4u3Ṽ��u2� . �A6�

Therefore, if Ṽ�u2� is a convex �concave� function, R�u� de-
creases �increases� with u and � is a decreasing �increasing�
function of the amplitude A.

APPENDIX B: GCH EQUATION: THE SIGN OF D

In Sec. II B 2 we found that for the generalized Cahn-
Hilliard equation, the phase diffusion coefficient has the

form D=q2�q	�¯�
 / D̃2. In order to establish the connection
between coarsening and sign of ���A�, it is necessary to

show that D̃2�0. Let us recall the following:

D̃2 = − v
��u0

C�u0�� �B1�

���v =
��u0

G�u0�
�B2�

C�u0� = C�− u0� � 0 G�u0� = G�− u0� � 0 �B3�

Since C�u0� is an arbitrary even and positive function and
v does not depend on it, it is necessary to prove that v��u0
�0, or, equivalently, that v���v�0. From Eq. �B2�, v
=v0���+c1+c2�, where v0 is a 2
-periodic function: we
impose c2=0 in order to maintain this property, while c1 will
be fixed later on.

u0��� is the periodic, bounded trajectory of a particle
moving in a symmetric potential well, with V�u� being an
increasing function between u=0 and u=A, the amplitude.
u0��� can be choosen as an odd function vanishing in �
=0, ±
, with u0��� and −���u0 having the same sign as �. If
we take the derivative of u0, use the relation �B2� and inte-
grate ���v, we recognize that ��v has the same properties as
u0���. In a similar way, we can say that ���v and ��u0 are
even functions vanishing in ±�0 �the extrema of u0 and ��v�,
that ���v����0 for �����0 and ���v����0 outside.

Let us now integrate ��v: v��� is an even function having
maxima in ±
 and a minimum in �=0. We fix the constant
c1 in such a way that v��� has zeros in ±�0. Therefore, since
v����0 for �����0 and v����0 outside,

v���v � 0, �B4�

as we should prove.

APPENDIX C: THE DIFFERENT SCENARIOS
FOR THE “CRYSTAL-GROWTH” EQUATION

We consider here Eq. �30�
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�tz = − �x�B�m� + G�m��x�C�m��xm�� �C1�

where m=�xz and the functions B ,G ,C are given by Eq. �62�

B�m� =
m

1 + m2 , G�m� =
1 + ��1 + m2

�1 + ���1 + m2�
,

C�m� =
1 + c�1 + m2��1 + 2m2�

�1 + c��1 + m2�3/2 .

If we perform a change of variable,

u = �
0

m

dsC�s� =
m

1 + c

1 + c�1 + m2�
�1 + m2

�C2�

we get what we named the full generalized Cahn-Hilliard
equation

�tu = − C�u��xx�B�u� + G�u�uxx� �C3�

whose steady states correspond to the trajectories of a par-
ticle moving in the potential

V�u� =� du
B�u�
G�u�

. �C4�

In the general case, it is not possible to invert the function
u�m� so as to get an explicit form for B�u�, G�u�, C�u� and,
therefore, V�u�. However, it will be sufficient to consider the
limiting expressions for V�u� �small and large u� in order to
discriminate between the possible dynamical scenarios.

Let us start by considering the case c=0, because analyt-
ics is simpler. The function u�m� can be inverted, m
=u /�1−u2, showing that the limit of large amplitude m cor-
responds for the new variable to u→ ±1. The potential V�u�
has the form

V�u� = �1 + �� � du
u

� + �1 − u2
�C5�

where the parameter ��0 is easily recognized to be irrel-
evant, so we can assume �=0 and get the approximate po-
tential V�u��−�1−u2 �see Fig. 3, inset�: This case had al-

ready been studied by the authors �11�, finding that ��A� is a
decreasing function �see also the remarks in Appendix A�.
We can conclude that no coarsening appears if c=0.

If c�0, u�m��cm2 / �1+c�for m	1 and large amplitude
now means large u. In this limit, m��u and
V�u���1+���u / �1+��u�, so that V�u���u for �=0 and
V�u���1+�� /� for ��0. In both cases—potential growing
as the square root of the amplitude or going to a constant—
��A� is an increasing function and there will be asymptotic
coarsening. The different behavior of V�u� for �=0 and �
�0 suggests different coarsening exponents, as are actually
found.

In the previous paragraph we have considered the limit of
large amplitude: now we are considering the opposite limit
of small amplitude. When m→0 it is trivial to check that u
=m, but we need the third order correction, which is easy to
calculate from Eq. �C2�: m�u+ �a /2�u3, with
a= �1−c� / �1+c�. For small m,

B�m�
G�m�

=
�1 + ��m

1 + ��1 + m2
�

�1 + ��m
1 + ��1 + m2/2�

� m −
�

2�1 + ��
m3.

�C6�

If now we pass to the variable u,

V�u� � � du��u +
a

2
u3� −

�

2�1 + ��
u3�

�
u2

2
+

1

8
�a −

�

2�1 + ���u4, �C7�

we find that the behavior of the curve ��A� at small A is fixed
by the sign of the quantity a−� / �2�1+���: � is an increasing
function of A �at small A� if that quantity is negative, i.e., if
a�� / �2�1+���. Using the expression a= �1−c� / �1+c� we
finally find that �A��0 at small A, if c�1/ �1+2��.
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